

10 e 11 de Outubro

FACULDADE DE MEDICINA DA UNIVERSIDADE DO PORTO

Fatores de risco não modificáveis para a IC:

Que caminho para uma abordagem personalizada e

precoce?

- Género -

Sofia Cabral, MD, FESC, FEACVI
Centro Hospitalar Universitário de Santo António
ICBAS, UP
Hospital Lusíadas Porto

Epidemiology

- Penetrance of genetic cardiomyopathies
- sex-specific conditions, eg peripartum cardiomyopathy

Pathophysiology

Clinical presentation

- HFrEF
- HFpEF

Response to treatments

Prognosis

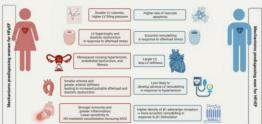
Scientific knowledge

Epidemiology

Comparable overall lifetime risk of HF

FHS: 20% vs 21% at age 40 years

Pathophysiology


Clinical presentation

HF phenotype

Rotterdam Study: 29% vs 33% at age 55 years

Comparable incidence of HF

Considerable differences when considering

- Macrovascular coronary disease
- HFrEF related to macrovascular coronary disease
- HFrEF 2 x higher risk than women
- HFrEF First and recurrent hospitalizations for acute HF

HFpEF 2:1

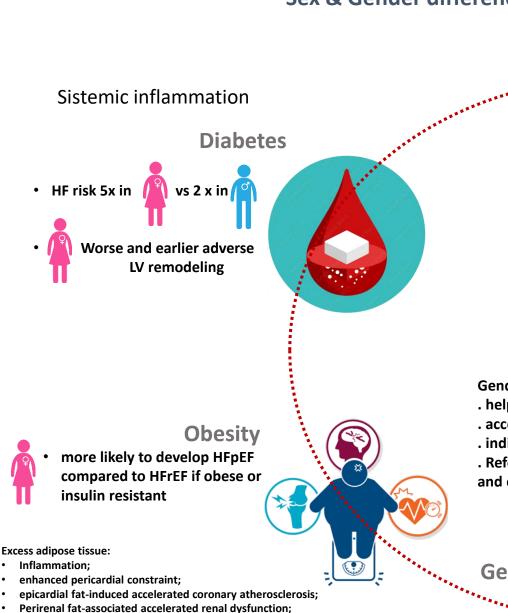
HFpEF:

.old and hypertensive

Endothelial inflammation and coronary

Coronary microvascular dysfunction is

present in 75% of patients with HFpEF


.obese, DM and abnormal diastology

.higher filling pressures → more prone to PH

.higher myocardial and arterial stiffness

microvascular dysfunction

Sex & Gender differences in traditional risk factors for heart failure

adipose-derived vasoconstrictors -> capillary rarefaction and impaired

tissue perfusion (myocardium, skeletal muscles)

-Hypertension

HF risk 3x in

vs 2x in

· more concentric remodeling in

Tobacco Smoking

NHANES I

 independent association with an 88% higher risk of HF

n 📭 vs

vs 45% higher risk in

Gender determines

- . help-seeking behavior
- . access to healthcare
- . individual use of the healthcare system

Gender

. Referral to GMDT, devices, advanced HF therapies and end of life care

Socio-economic status

Socioeconomic status is a powerful independent predictor of HF development and adverse outcomes: in the highest Gini index countries more prone to HF and worse prognosis

- Low income
- Low education level
- Lack of social support/social isolation

Genetics

more severely affected in genetic cardiomyopathies

sex-specific phenotypes in X-linked mutations

Sofia Cabral 2024

Response to Pharmacological treatments

Different **responses**e effect of GDMT:

Pharmacokinetics:

Similar doses of ACEIs, ARBs and BB lead to the maximum dose plasma concentrations 2,5 higher in

- lower weight and height
- higher proportion of body fat
- lower peripheral distribution volume
- lower alomerular and hepatic filtration rate decrease drua
- Different drug metabolism (Cytochrome P450 isoenzymes)

Pharmacodynamic

Similar doses of BB cause slower HR and lower blood pressure

Side effects:

- Experience up to twice the rate of adverse events from HF medications
- DIG trial significantly higher risk of death (Adjusted HR 1,23) N Engl J Med 2002;347:1403-1411
- Low-ceiling diuretics (thiazides) RR of adverse effects 4,02


J. Clin. Pharmacol. 2012, 74, 1045-1052

HFrEF

Need for different sex-based dose targets in

highest risk reduction with 50-60% of **BB** traditional target dose

dose

ATLAS (lisinopril high vs low dose) **HEAAL** (losartan high vs low dose) **BIOSTAT-CHF**

progressive risk reduction with up-titration to target dose

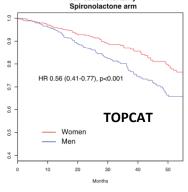
HFpEF

sex-specific benefit of MRAs?

benefit of RAS across ejection fraction spectrum

(TOPCAT_{American cohort})

post-hoc, exploratory subgroup analysis


greater benefit of ARNi in women (27% risk reduction CV death and HFH) (Paragon HF)

(pre-specified subgroup analysis)

Circulation 2019;141:

- benefit of RAS only at lower EF (TOPCAT)
- no risk reduction with ARNi (Paragon HF)

Total Hospitalizations for HF

PARAGON-HF

Sofia Cabral 2024

Response to Cardiac Devices

ICD

Effectiveness of implantable cardioverterdefibrillators for the primary prevention of sudden cardiac death in women with advanced heart failure: a meta-analysis of randomized controlled trials

DEFINITE DINAMIT MUSTT MADIT-II SCD-HeFT

Hamid Ghanbari ¹, Ghassan Dalloul, Reema Hasan, Marcos Daccarett, Souheil Saba, Shukri David, Christian Machado

Arch Inter Med; 2009;169(16):1500-6
Implantable cardioverter-defibrillator therapy for the primary prevention of sudden cardiac death in women does not reduce all-cause mortality.

22% reduction in mortality among men

Sex Differences in Outcomes of Patients with an Implantable Cardioverter-Defibrillator for the Secondary Prevention of Sudden Cardiac Death

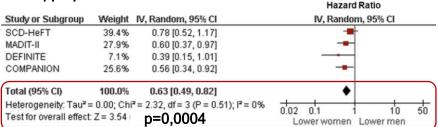
Alwin B P Noordman 1, Michiel Rienstra 1, Yuri Blaauw 1, Bart A Mulder 1, Alexander H Maass 1

J Cardiovasc Dev Dis 2024; 11(4): 116

Women with **secondary prevention** ICDs were **less likely** than men to receive appropriate ICD therapy (anti-tachycardia pacing therapy and ICD shocks).

less myocardial scar tissue and a lower rate of ventricular arrhythmias resulting in sudden cardiac death Gender differences in clinical outcome and primary prevention defibrillator benefit in patients with severe left ventricular dysfunction: a systematic review and meta-analysis

Pasquale Santangeli ¹, Gemma Pelargonio, Antonio Dello Russo, Michela Casella, Caterina Bisceglia, Stefano Bartoletti, Pietro Santarelli, Luigi Di Biase, Andrea Natale


Heart Rythm 2010; 7: 876-82 Hazard Ratio Houdy or Subgroup Weight IV, Random, 95% CI V, Random, 95% CI V, Random, 95% CI

Study of Subgroup	vveigni	IV, Random, 95% CI	iv, Kandom, 95% Ci	
SCD-HeFT	51.0%	0.71 [0.57, 0.88]	•	
MADIT-II	23.5%	0.66 [0.48, 0.90]	-	
DEFINITE	6.6%	0.49 [0.27, 0.88]	-	
COMPANION	18.8%	0.65 [0.46, 0.92]	*	
Total (95% CI)	100.0%	0.67 [0.58, 0.78]	•	
		2 = 1.40, df = 3 (P = 0.70); I2 = 0%	0.01 0.1 1 10 100	
Test for overall effect	Z = 5.17	p<0,00001	0.01 0.1 1 10 100 Favours ICD Favours Placebo	

B. ICD survival benefit among women

Study or Subgroup	Weight I	IV, Random, 95% CI	IV, Random, 95% CI
SCD-HeFT	44.3%	0.90 [0.57, 1.43]	-
MADIT-II	18.9%	0.57 [0.28, 1.15]	
DEFINITE	14.1%	1.14 [0.50, 2.58]	-
COMPANION	22.8%	0.59 [0.31, 1.12]	
Total (95% CI)	100.0%	0.78 [0.57, 1.05]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 2.69, df = 3 (P = 0.44); I ² = 0%			0.01 0.1 1 10 100
Test for overall effect	Z = 1.63	p=0,10	0.01 0.1 1 10 100 Favours ICD Favours Placebo

B. Appropriate ICD Intervention

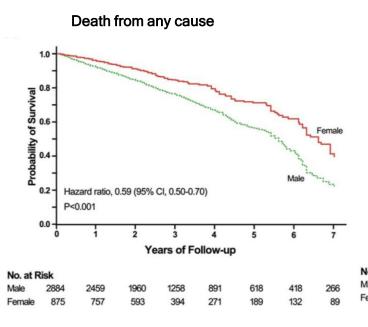
Response to Cardiac Devices

Under use of devices in **CRT and ICD**

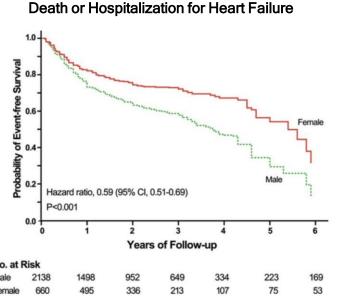
Adjusted to age and comorbidities

Swedish HF Registry: 26% less likely to receive

defibrillator or cardiac resynchronization therapy



More Favorable Response to Cardiac


in Men Meta analysis of 33 434 patients from 72 studies

Yun-Jiu Cheng, MD, Jing Zhang, MD, Wei-Jie Li, MD, Xiao-Xiong Lin, MD, Wu-Tao Zeng, MD, PhD, Kai Tang, MD, PhD, An-li Tang, MD

Resynchronization Therapy in Women Than

CRT

Changes in Echocardiographic and Clinical Parameters Between Baseline and Long-Term Follow-up for Cardiac Resynchronization -Treated Patients by Sex from 6 studies

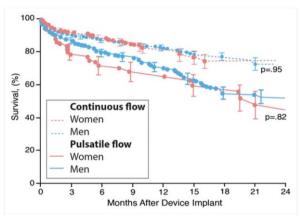
	Women (n=1063)	Men (n=2452)	P Value
Echocardiographic	parameters		
ΔLVEDV	-22.68±12.70	-10.88±7.24	<0.001
ΔLVESV	-24.79±9.73	-13.47±6.69	<0.001
ΔLVEF	9.42±8.60	7.64±8.32	<0.001
Clinical parameter	S		
ΔΝΥΗΑ	-0.96±0.59	-0.95±0.65	0.51
ΔQoL	-16.65±15.23	-15.25±13.43	0.12
ΔWCT	87.35±62.47	78.69±56.60	0.37

Women had better outcomes from CRT compared with men - compared with men, women had about a

33% reduction in the risk of death from any cause and 20% reduction in the risk of death or HF

Sex Differences in Advanced Heart Failure Therapies

Non-pharmacological therapies

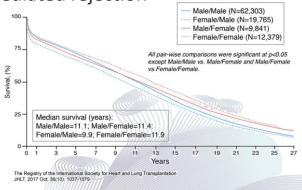


~80 % of VADs implants in

- No sex differences in efficacy or mortality
- No sex differences in time to first device malfunction, bleeding, or infection
- Higher stroke rates in women difference in the differ

HeartMate 3 have no sex-related difference in stroke risk

Possible explanations: older age, comorbidities burden...


~21 % of Heart Transplants occur in

- worse prognosis in transplant waiting list (lower rates of mechanical circulatory support despite similar INTERMACS status)
- better long-term survival
- lower risk of coronary allograft vasculopathy
- lower risk of malignancy

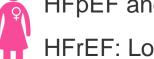
higher risk of antibody-mediated rejection

Sex differences in Heart Failure

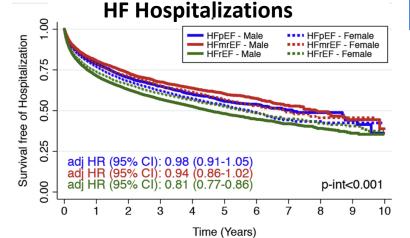
PROMs:

much lower quality of life (QoL)*
more than 10-point median difference in KCCQ score
The additional years of life are of poorer quality

Am J Crit Care. (2002) 11:211-9


*Circ Heart Fail 2019;12:e006539

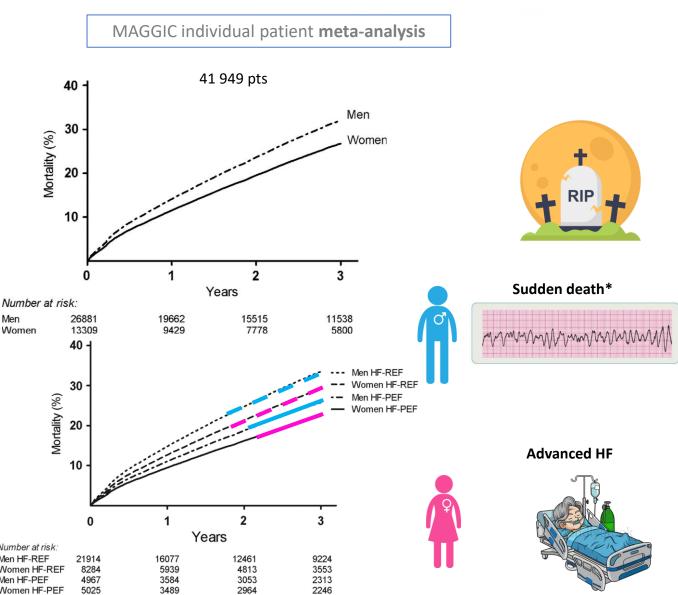
much higher rates of anxiety and depression


Am Coll Cardiol. (2004) 43:1542-

Hospitalizations:

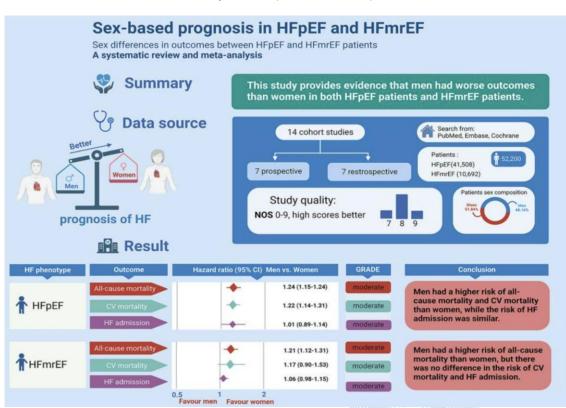
HFpEF and HFmEF: similar adjusted rates of hospital admissions

HFrEF: Lower risk of CV and HFH


Sex-Based Differences in HeartFailure Across the Ejection Fraction Spectrum: Phenotyping, and Prognostic and Therapeutic Implications

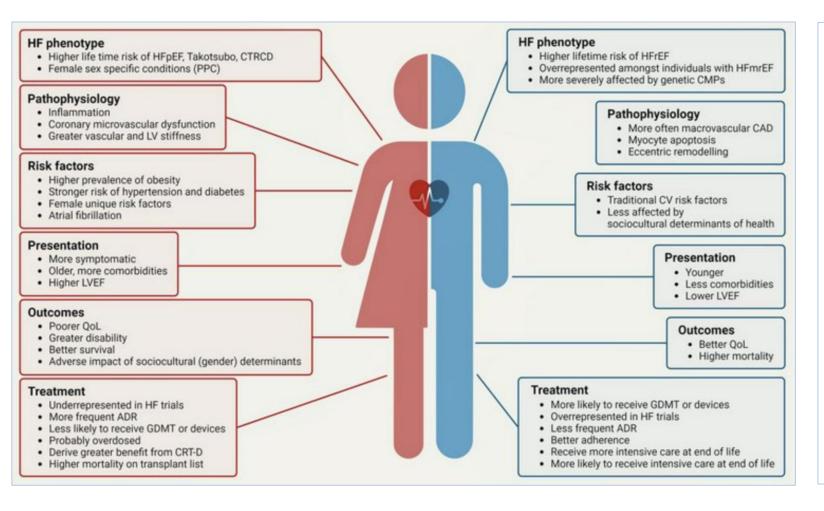
42,987 patients Swede HF Registry

Survival is better for women with heart failure compared with men, irrespective of EF


Adjusted lower risk of all-cause death and CV mortality

Eur J Heart Fail 2012;14:473-9

Sex differences in mortality and hospitalization in heart failure with preserved and mid-range ejection fraction: a systematic review and **meta-analysis** of cohort studies


41,508 HFpEF patients (44.65% males) 10,692 HFmrEF patients (61.79% males)

Front Cardiovasc Med 2023;10:1257335

Sofia Cabral₂₀₂₄

Take Home Messages

- Distinctive epidemiological features
- Sex-related pathophysiology
- Different responses to treatments
 (doses, effects, adverse reactions, benefit)
- Referral inequities
- Biological determinism but also gender dependency
- Similar Hospitalizations but different
 Survival (men worse)
- Underrepresentation of women in clinical trials → weaker evidence

Obrigada!

msofiacabral@gmail.com
Sofia Cabral₂₀₂₄

