3rd PORTO MEETING 2020 September, 18th - 19th

ARRHYTHMO "GENETIC" CARDIOMYOPATHIES: PERSONALIZING SUDDEN DEATH RISK STRATIFICATION

ALEXANDRA SOUSA

Faculdade de Medicina da Universidade do Porto; Grupo de Investigação CardioCare - CINTESIS; Grupo de Estudos de Biologia Celular e Genética Cardiovascular da Sociedade Portuguesa de Cardiologia; Hospital de Santa Maria Maior, E.P.E.

Advances in Heart Failure

SUMMARY

- ✓ Sudden cardiac death in non-ischemic dilated cardiomyopathy
- ✓ New concepts the arrhythmogenic cardiomyopathies
- ✓ Personalized arrhythmic risk assessment
- ✓ Clinical, electrocardiographic, electrophysiological and imaging parameters
- ✓ Importance of genetic profiling in sudden death risk stratification

✓ Conclusions

SUDDEN CARDIAC DEATH IN (NON-ISCHAEMIC) DILATED CARDIOMYOPATHY: A CHALLENGING ISSUE

- Three-year mortality remains high (12-20%) resulting from heart failure or arrhythmic sudden cardiac death (SCD).
- Incidence of SCD in dilated cardiomyopathy (DCM) patients is ~1.5/100 PA.
- DCM accounts for a substantial proportion of SCD specially among people of working age (younger, less comorbidity, lower mortality risk from other causes).

3rd PORTO MEETING 2020 September, **18th - 19th**

SUDDEN CARDIAC DEATH IN (NON-ISCHAEMIC) DILATED CARDIOMYOPATHY: A CHALLENGING ISSUE

3rd PORTO MEETING 2020 September, **18th - 19th**

Study	n	Inclusion Criteria	Intervention	Follow-Up (Median), mo	All-Cause Mortality	Sudden Cardiac Death
CAT ³	104	LVEF <30% NYHA II-III	ICD vs OMT	23	Terminated early	
AMIOVIRT ⁴	103	LVEF ≤35% NYHA I–III NSVT	ICD vs amio	24	Terminated early	
SCD-HeFT (DCM cohort)⁵	1211	LVEF <35% NYHA II-III	ICD vs OMT vs amio	46	I, 21.4%; C, 27.9% (5 y) HR, 0.73; 95% CI, 0.50–1.07; <i>P</i> =0.06	
DEFINITE ⁶	458	LVEF <36% NYHA I–III NSVT or PVCs	ICD vs OMT	29	I, 12.2%; C, 17.4% HR, 0.65; 95% CI, 0.40−1.06; <i>P</i> =0.08	I, 1.3%; C, 6.1% HR, 0.20; 95% CI, 0.06–0.71; <i>P</i> =0.006
DANISH ⁷	1116	LVEF <35% NYHA II–III (IV if CRT) NT-proBNP >200pg/mL	ICD vs OMT	68	I, 21.6%; C, 23.4%; HR, 0.87; 95% CI, 0.68–1.12; <i>P</i> =0.28	I, 4.3%; C, 8.2% HR, 0.50; 95% CI, 0.31–0.82; <i>P</i> =0.005

SUDDEN CARDIAC DEATH IN (NON-ISCHAEMIC) DILATED CARDIOMYOPATHY: A CHALLENGING ISSUE

- Poor sensitivity and specificity of left ventricular ejection fraction (LVEF) for predicting SCD:
 - High proportion of cardiac arrest in patients with LVEF > 35%
 - Low incidence of appropriate ICD therapies
- Complications of ICD, inappropriate shocks and costs
- Inherent subjectivity in assessing LVEF and NYHA
- Up to 40% experience reverse remodelling under treatment

CLASSIC DEFINITIONS

3rd PORTO MEETING 2020 September, 18th - 19th

Dilated cardiomyopathy

Arrhythmogenic (right ventricular) cardiomyopathy

CLASSIFICATION OF CARDIOMYOPATHIES

Elliot P, EHJ 2008

Maron BJ, Circ 2006

Genetic heterogeneity – numerous genetic variants, in multiple genes, with great overlap between "different" cardiomyopathies

ACTC1 CSRP3 PDLIM3 NEXN TCAP TNNC1 VCL LDB3 TNNI3 МҮВРСЗ ILK MYOZ2 ACTN2 TNNT2 (3%) MYL3 Hypertrophic MYH7 (4%) MYL2 cardiomyopathy MYLK2 MYH6 (4%) PRKAG2 TTN (25%) MURC JAG1 DES GATA4 DSP ANKRD1 ELN PKP2 Congenital Dilated ARVC heart cardiomyopathy TPM1 disease NOTCH1 ABCCS DSC2 NOTCH2 DSG2 TMEM NKX2-5 NEBL PSEN1 EYA4 DMD PLN SNTA1 RYR2 CACNA1C/TS CRYAB TAZ SCN5A TMPO KCNJ5 PSEN2 (2-3%) LAMA4 BAG3 RAF1 RBM20 KCNH2 ANK2 MYPN GLA LAMP3 (3-4% **Channelopathies** AKAP9 Neuromuscular KCNQ1 LMNA (6%) Syndromic disorders FXN CAV3 SCN4B EMD SGCD Genetic cardiac disorder KCNE1 KCNJ2 KCNE2 Gene associated with one phenotype Gene associated with two phenotypes Gene associated with three phenotypes

DTNA HCN4 NCCM MIB1 PRDM16 ANO5 FKRP PSEN1 PLEKHM2 PSEN2 TAZ ABCC9 FKTN DCM RBM20 BAG3 GATAD1 SCGD CRYAB ILK LAMA4 TBX20 DMD EMD OBSCN TMPO EYA4 PDLIM3 TXNRD2 FHL2 CALR3 ACTN2 MYH6 FHL1 HCM ANKRD1 NEXN CAV3 TCAP GLA JPH2 CSRP3 TNNC1 FHL2 MYLK2 VCL LAMP2 MYOZ1 MYOZ2 PRKAG2 TRIM63 MYL2 ACTC1 RCM MYL3 MYH7 MYPN **МҮВРС3** TNNI3 TNNT2 TPM1 TTN DES LDB3 PLN DSG2 DSP PKP2 LMNA RYR2 SCN5A **Clinical Cardiogenetics**, 2nd ACM TMEM43 CTNNA3 JUP DSC2 TGFB3 Ed. Springer 2016

3rd PORTO MEETING 2020 September, 18th - 19th

Hershberg RE, Nature 2013

ESC NEW DEFINITION OF DILATED CARDIOMYOPATHY

*Shown by two independent imaging modalities, ^mutation carrier or not; anti-heart autoantibody (AHA) positive or negative

ARRHYTHMIC PHENOTYPES IN DILATED CARDIOMYOPATHY

3rd PORTO MEETING 2020 September, 18th - 19th

Arrhythmic Genotypes in Familial Dilated Cardiomyopathy: Implications for Genetic Testing and Clinical Management

LEFT VENTRICULAR INVOLVEMENT IN ARRHYTHMOGENIC CARDIOMYOPATHY

3rd PORTO MEETING 2020 September, 18th - 19th

Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy

NEW DEFINITIONS OF ARRHYTHMOGENIC CARDIOMYOPATHY

3rd PORTO MEETING 2020 September, 18th - 19th

ESC European Society of Cardiology

European Journal of Heart Failure (2019) doi:10.1002/ejhf.1534

CONSENSUS DOCUMENT

Definition and treatment of arrhythmogenic cardiomyopathy: an updated expert panel report

Perry M. Elliott¹*, Aris Anastasakis², Angeliki Asimaki³, Cristina Basso⁴, Barbara Bauce⁴, Matthew A. Brooke⁵, Hugh Calkins⁶, Domenico Corrado⁴, Firat Duru⁷, Kathleen J. Green⁸, Daniel P. Judge⁹, David Kelsell⁵, Pier D. Lambiase¹, William J. McKenna¹⁰, Kalliopi Pilichou⁴, Alexandros Protonotarios¹, Jeffrey E. Saffitz¹¹, Petros Syrris¹⁰, Hari Tandri⁶, Anneline Te Riele¹², Gaetano Thiene⁴, Adalena Tsatsopoulou¹³, and J. Peter van Tintelen^{14,15}

NEW DEFINITIONS OF ARRHYTHMOGENIC CARDIOMYOPATHY

3rd PORTO MEETING 2020 September, 18th - 19th

The term 'arrhythmogenic cardiomyopathy' is used to describe a family of diseases that feature structural myocardial abnormalities (identified by macro- and microscopic pathological examination besides cardiac imaging) and ventricular arrhythmia. In *Figure 1*,

- 2) Electrical abnormalities
- 3) Structural abnormalities
- 4) Heritability
- 5) Phenocopy exclusion

NEW DEFINITIONS OF ARRHYTHMOGENIC CARDIOMYOPATHY

3rd PORTO MEETING 2020 September, 18th - 19th

2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy @ •

- Arrhythmogenic heart muscle disease not explained by ischemia, hypertension or valvopathies
- Arrhythmia is the presenting feature (AF, CD, RV or LV arrhythmias)
- Overlapping syndromes
- Includes: ARVC/ALVC, DCM, Chagas disease, Myocarditis, Sarcoidosis, Amyloidosis, LV noncompaction

*Not explained by ischemic, hypertensive, or valvular heart disease **Arrhythmia includes conduction disease, atrial arrhythmias, ventricular arrhythmias

Alexandra Sousa

Towbin JA, Heart Rhythm 2019

ARRHYTHMIC RISK ASSESSMENT

3rd PORTO MEETING 2020 September, **18th - 19th**

PERSONALIZED ARRHYTHMIC RISK ASSESSMENT

3rd PORTO MEETING 2020 September, 18th - 19th

Personalizing Risk Stratification for Sudden Death in Dilated Cardiomyopathy

The Past, Present, and Future

Halliday B, Circ 2017

PERSONALIZED ARRHYTHMIC RISK ASSESSMENT

3rd PORTO MEETING 2020 September, 18th - 19th

Cannatà A, Heart 2020

CMR – LATE GADOLINIUM ENHANCEMENT

3rd PORTO MEETING 2020 September, 18th - 19th

Strong association with worse outcomes

LOCALIZATION Concomitant presence of septal and free wall LGE associated with worse outcome. In the future LGE localization might provide further prognostic impact

EXTENSION Quantitative assessment might provide further prognostic impact in the future

Strong evidences in large studies and metanalyses Conflicting evidences from smaller studies

IMPORTANCE OF GENETIC PROFILING IN SUDDEN DEATH RISK STRATIFICATION

3rd PORTO MEETING 2020 September, 18th - 19th

Merlo M, EJHF 2018

LMNA - Lamin A/C

Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation

Hasselberg NE, EHJ 2018

FLNC – filamin C

Truncating *FLNC* Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies

Dilated/Arrhythmogenic Cardiomyopathies

Left Ventricular Dilation and Systolic Dysfunction with Myocardial Fibrosis

Ventricular Arrhythmias Familial Sudden Cardiac Death

Ortiz-Genga MF, JACC 2016

PLN - phospholamban

3rd PORTO MEETING 2020 September, 18th - 19th

Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy

R14del mutation (15% DCM, 12% ACM Netherlands)

We screened a cohort of 97 ARVC and 257 DCM unrelated index patients for *PLN* mutations and evaluated their clinical characteristics. *PLN* mutation R14del was identified in 12 (12%) ARVC patients and in 39 (15%) DCM patients. Haplotype analysis revealed a common founder, estimated to be between 575 and 825 years old. A low voltage elec-

The *PLN* R14del founder mutation is present in a substantial number of patients clinically diagnosed with DCM or ARVC. R14del+ patients diagnosed with DCM showed an arrhythmogenic phenotype, and SCD at young age can be the presenting symptom. These findings support the concept of 'arrhythmogenic cardiomyopathy'.

Van der Zwaag PA, Eur J Heart Fail 2012

Alexandra Sousa

TTN – titin

Association of Titin-Truncating Genetic Variants With Life-threatening Cardiac Arrhythmias in Patients With Dilated Cardiomyopathy and Implanted Defibrillators

B

A Antitachycardia pacing or shock

The association of TTNtv with ventricular arrhythmias was independent of the presence of midwall LGE or other covariates.

Corden B, JAMA Network Open 2019

RBM20 – RNA binding motif protein 20

Pathogenic *RBM20*-Variants Are Associated With a Severe Disease Expression in Male Patients With Dilated Cardiomyopathy

Hey TM, Circ Heart Fail 2019

TMEM43 – transmembrane protein 43

3rd PORTO MEETING 2020 September, 18th - 19th

Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Is a Fully Penetrant, Lethal Arrhythmic Disorder Caused by a Missense Mutation in the *TMEM43* Gene Merner ND, Am J Hum Genet 2008

TMEM43 mutations associated with arrhythmogenic right ventricular cardiomyopathy in non-Newfoundland populations

Baskin B, Hum Genet 2013

The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43 Hodgkinson KA, Clin Genet 2013

11% fullfilled DCM criteria

SCN5A – sodium channel

3rd PORTO MEETING 2020 September, 18th - 19th

Desmosomal genes – DSP, DSC2, DSG2, PKP2

3rd PORTO MEETING 2020 September, 18th - 19th

Genetic Risk of Arrhythmic Phenotypes in Patients With Dilated Cardiomyopathy

GENETICALLY-GUIDED SUDDEN DEATH

RISK STRATIFICATION

Towards precision Medicine

Sudden death risk stratification – LMNA

Risk Factors for Malignant Ventricular Arrhythmias in Lamin A/C Mutation Carriers

A European Cohort Study

with DCM and a confirmed disease-causing <i>LMNA</i> mutation and clinical risk factors. ^d	lla	В	
^d Risk factors in patients with a confirmed <i>LMNA</i> mutation: NSVT during ambulatory electrocardiogram monitoring, LVEF <45% at first evaluation, male sex and non-missense mutations (insertion, deletion, truncations or mutations affecting splicing). <i>Priori S, Europace 2015</i>			

In individuals with lamin A/C ACM and two or more of the following: LVEF <45%, NSVT, male sex, an ICD is reasonable.

IIa

B-NR

Towbin JA, Heart Rhythm 2019

Sudden death risk stratification – LMNA

LMNA-risk VTA calculator Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies						
Sex	Male Female					
Non-missense LMNA mutation	🔍 Yes 🔍 No	Non-missense mutations include insertions, deletions, truncating mutations or mutations affecting splicing				
Atrio-ventricular block	Absent Ist degree High degree	Please select the highest degree. 1st degree AV block corresponds to ≥0.20 sec PR interval and high degree AV block to type II 2nd degree or 3rd degree (and not type I 2nd degree)				
Non-sustained ventricular tachycardia	O Yes O No	NSVT corresponds to \geq 3 consecutive ventricular complexes at a rate \geq 120 bpm on 24-h ambulatory electrocardiographic monitoring				
Left ventricular ejection fraction	%	Left ventricular ejection fraction measurement derived from echocardiogram				
	Risk of Life-Threatening Ven	tricular Tachyarrhythmias at 5 years				
		%				
		Reset				
Life-Threatening Ventricular Tachyarrhythmias is defined as 1) sudden cardiac death, 2) appropriate ICD therapy, defined as a shock to terminate a VTA, or 3) other manifestations of hemodynamically unstable VTA						

https://lmna-risk-vta.fr/

Sudden death risk stratification – desmosomal genes

3rd PORTO MEETING 2020 September, 18th - 19th

Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers

Sudden death risk stratification – desmosomal genes

3rd PORTO MEETING 2020 September, 18th - 19th

COMPLEX GENETIC STATUS RELATED TO WORSE PROGNOSIS

❑ Compound or digenic heterozygosity up to 25% of cases.

Worse clinical course:

- greater penetrance
- early ventricular arrhythmias
- higher risk of SD
- frequent LV involvement
- increased risk of end-stage HF

ICD implantation may be considered in patients with one or more recognized risk factors for VA in adult patients with a life expectancy >1 year following detailed clinical assessment that takes into account the lifelong risk of complications and the impact of an ICD on lifestyle, socioeconomic status and psychological health.

during EPS.^{113,114,387,389,395,404-406} Compound or digenic heterozygosity occurs in >10% of carriers of the ARVC-causing desmosomal gene mutation and may be a risk factor for major arrhythmic events and SCD.⁴⁰⁷ As the studies examining outcomes

Alexandra Sousa

C

Sudden death risk stratification – other genes

3rd PORTO MEETING 2020 September, 18th - 19th

2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy @ •

IIa	B-NR	In individuals with phospholamban cardiomyopathy and LVEF <45% or NSVT, an ICD is reasonable.
IIa	C-LD	In individuals with <i>FLNC</i> ACM and a <u>n LVEF <45%,</u> an ICD is reasonable.

Sudden death risk stratification – other genes

3rd PORTO MEETING 2020 September, **18th - 19th**

Hey TM, Circ Heart Fail 2019 Peters S, Heart Lung Circ 2019 Corden B, JAMA Network Open 2019 Bondue A, Cardiovasc Res 2018 Hodgkinson KA, Clin Genet 2013

INFLUENCE OF GENOTYPE IN REVERSE REMODELLING

3rd PORTO MEETING 2020 September, 18th - 19th

Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling

b 1.0 rate 0.8 **Event-free** 0.6 TTN 0.4 MNA Others 0.2 Log rank p=0.008 0 15 10 0 5 Follow-up from diagnosis (year)

Last follow-up

Mid-term

40

30

20

10

0

Tobita T, Sci Rep 2018

INFLUENCE OF GENOTYPE IN REVERSE REMODELLING

3rd PORTO MEETING 2020 September, 18th - 19th

Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling

PERSONALIZED ARRHYTHMIC RISK ASSESSMENT

3rd PORTO MEETING 2020 September, 18th - 19th

Cannatà A, Heart 2020

PERSONALIZED ARRHYTHMIC RISK ASSESSMENT

ARRHYTHMO "GENETIC" CARDIOMYOPATHIES

OVERLAPPING SYNDROMES WITH SPECIFIC <u>SINGULARITIES</u> DICTATED BY GENETICS

Several shared features

- Family history
- Genetic basis
- Histopathology
- Biventricular involvement
- ECG anomalies
- Arrhythmias

Personalized Medicine

- Sudden death risk stratification
- Therapeutic interventions
 - In asymptomatic pathogenic variant carriers
 - Target therapies
- Familial screening
 - Early detection of the disease
 - Management of incipient disease
 - Counselling (sports, reproductive issues...)

3rd PORTO MEETING 2020 September, 18th - 19th

ARRHYTHMO "GENETIC" CARDIOMYOPATHIES: PERSONALIZING SUDDEN DEATH RISK STRATIFICATION

ALEXANDRA SOUSA

Faculdade de Medicina da Universidade do Porto; Grupo de Investigação CardioCare - CINTESIS; Grupo de Estudos de Biologia Celular e Genética Cardiovascular da Sociedade Portuguesa de Cardiologia; Hospital de Santa Maria Maior, E.P.E.

Advances in Heart Failure